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Abstract—An existing finite-difference formulation, which uses immobilization of the moving interface
while preserving the conservative form of the equations, is extended here to include convection and volume
change. In this two-dimensional treatment, the physical boundaries are allowed to move in both coordinate
directions. This is done by using a novel technique that discretizes the pseudo-velocities (arising from the
immobilization) according to the geometrical relation associated with the moving control-volumes. As a
result, the pseudo-velocity fields independently satisfy the mass continuity. This makes the present numeri-
cal method suitable for both diffusion- and convection/diffusion-controlled moving boundary problems.
In the solution of the momentum equations, the physical covariant velocity components are selected as
the dependent variables and the SIMPLER algorithm is employed for the coupling between the continuity
and the momentum equations. The method is applicable to problems with multiple, moving interfaces. As
an illustrative example, melting in a two-dimensional cavity is considered. The predictions are then
compared with the available experimental results and good agreements are found.

1. INTRODUCTION

ONE oF THE finite-difference methods introduced
recently for two-dimensional moving interface prob-
lems [1] uses a coordinate transformation that pre-
serves the conservative form of the governing equa-
tions. The development in ref. [1] focuses on diffusion
only and, although not an inherent limitation, it
allows for the movement of physical domain bound-
aries in a single coordinate direction. In this study,
we extend the treatment to include convection and
volume change, and to allow for the movement of the
boundaries in both coordinate directions.

A variety of numerical methods are available for
treatment of convection/diffusion phase-change prob-
lems ; however, they suffer in generality of application
and in accuracy. Sparrow et al. [2] give the first
numerical analysis of phase-change problems
accounting for natural convection in the melt. In their
work, the slope of the interface is neglected and tem-
poral interpolation of the known fields (velocity and
temperature) is required to update the unknown
fields. In the numerical study of Benard et al. [3],
natural convection in the melt is coupled with heat
conduction in the solid phase. The non-orthogonal
terms resulting from the use of a coordinate trans-
formation are neglected. Steady state is assumed in
the liquid phase while the transient terms are included
in the solid phase, i.e. two different solution methods
are applied. Lacroix [4] uses the stream function—
vorticity formulation and includes the transient and
the non-orthogonal terms in the transformed equa-
tions expressed in non-conservative forms. The accu-
racy of this method is not examined by, for exampile,
applying the conventional test on the diffusion-con-
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trolled phase-change problems for which analytical
solutions are available. In general, the drawbacks of
these numerical methods (and other available
methods) are that the transformed equations are
expressed in non-conservative forms and that the
interface conditions are treated separately from the
transformed equations. Therefore, their formulations
weakly satisfy the conservation principles. Also, the
density difference between phases, which can be
significant in some cases, is not included.

In order to overcome the shortcomings mentioned,
we employ a general transformed equation which pre-
serves the conservative forms of the original governing
equations. Also, we derive the interface conditions
directly from the continuity of the fluxes in the trans-
formed equation. As a result, the present numerical
formulation is consistent with the well-established
solution methodology for problems with fixed bound-
aries (e.g. Patankar [5]). In deriving the discretization
equations, the moving control-volumes in the physical
coordinate as well as the stationary control-volumes
in the transformed coordinate are used. The pseudo-
velocities arising from the immobilization of the mov-
ing boundaries are discretized in accordance with the
geometrical relation associated with the moving con-
trol-volumes. Then, the pseudo-velocity fields satisfy
the continuity equation independent of the physical
velocity fields. Therefore, both diffusion- and con-
vection/diffusion-controlled moving interface prob-
lems can be solved with a unified approach. Moreover,
a multiple number of moving boundaries can be easily
treated. For the computation of the fluid motion, an
efficient calculation procedure recently proposed by
Karki and Patankar [6] is adopted and modified
accounting for the moving boundaries.
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A area term or function

a coefficient in finite-difference equations
b source term in finite-difference equations
¢ specific heat capacity [Tkg~ 'K ']

¢ ratio ¢,/c,

D diffusion conductance

F flow term

G mass flow rate across the interface £,
H initial height of the material [m]

h specific enthalpy [Jkg™']

By latent heat of liquid/solid phase change

Ukg™']

he, b,  geometric factors

J Jacobian

k thermal conductivity [Wm™ 'K ']

k, ratio k,/k,

L thickness of the liquid overflow region
[m]

M,N geometric factors

P pressure [Pa]

P* dimensionless pressure, PH?/pv?

Pr Prandtl number, v/a,

Ra  Rayleigh number, gf(To— T))H*/(a,v)

S source term

Sre  Stefan number, ¢, (To—T')/hy

T{T,) temperature distribution in the

liquid (solid) phase [K]

To(T,) temperature at the hot (cold) vertical
wall [K]

T, melting temperature of the material [K]}

T* dimen§ioni§ss temperature,

_ @=TE -1

i dimensionless temperature at the
boundary £, (T,— 7‘;1)/(7‘10— T)

t time [s]

* dimensionless time(= vt/H?)

At time increment [s]

U,V  relative, contravariant velocities

u,v  Cartesian velocities fms™']

u*,v* dimensionless velocities, uH/v, vH|v
u,u; covariant velocity components [ms™']

NOMENCLATURE

velocity at the outlet fms™']

finite-volume element

Viop vertical velocity of the free surface
[ms~']

W width [m]

contravariant pseudo-velocities

spatial coordinates [m]

pseudo-velocities {ms™ ]

dimensionless coordinates, x/H, y/H

X position of the boundary with

i=01,2, [m].

Greek symbols
o thermal diffusivity [m?s~ ]
o, @, geometric factors
B:. B, geometric factors
effective diffusion coefficient
transformed coordinate
geometric factor
kinematic viscosity [m?s™']
transformed coordinate
density [kgm™?]
ratio p,/p,
general dependent variable
integrated non-orthogonal term.

DE DD I E I

Superscripts
known quantities at the old time
dimensionless quantities

quantities at the boundary.

y R Oy

Subscripts

1 liquid

2 sohd

e,w,n,s east, west, north, and south
control-volume faces

E,W,N,S east, west, north, and south grid
points

MB  moving-boundary term

NO  non-orthogonal term

nb neighbor

P grid point under consideration.

As an application of the present numerical method,
melting in a two-dimensional cavity driven by the
coupling of heat conduction in the solid phase and
natural convection in the liquid phase is considered.
For this example, the results of an experiment are
available [3]. In the numerical analysis, the density
difference between phases and the overflow of the
liquid are also included using a simple model.

2. NUMERICAL FORMULATION

2.1. Governing equations

The conservation equation for a general dependent
variable ¢, in two-dimensional Cartesian coordinates,
is expressed as

8 8 ¢
5 PO+ o1 (Pud’—ré‘)J

i d
. _6; <pv¢-—-r'5(§> =S(x, ) (1)

where I' is the effective diffusion coefficient and S{x, »)
is the source term corresponding to ¢. The density p
is assumed to be constant within each physical domain
of interest. When the boundaries of the physical
domain move with time, it is convenient to introduce
a general curvilinear coordinate system

y=yén 2

so that the moving boundaries are immobilized in the

x = x{&n, 1),
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dimensionlesst (&, 1) coordinate for all times. Then,
transformation of equation (1), using equation (2),
gives

2 2 2T 3
5 P+ 3z (ﬂUd" e 55)

2 0T 06\
+§E(PV¢*T,§ a_)‘?)—fs(f,ﬁ)

(or2) 2013 o
“ %\ h, on) o\ h az) O

U=y, (u—x)—x,{v—y)
V=x-y)—yu—x)

ar = hhilT, o, = hhiT

B: = An,J, B, =ik )T

hy=(xZ 4D hy= ()"
A= XXyt VeV

where

J= x€y,7 —YeXy.

Here, x,, x;, x,, y:, y: and y, denote partial derivatives.
The terms U and V represent the relative, contra-
variant velocity components normal to the constant
&- and g-coordinate lines, respectively; and S(&, #)
is the source term in the transformed coordinate.

2.2, Grid system

The grid system is a staggered-grid with the scalars
at the center of the control-volume and the velocity
components at its faces [5]. Thus, at a given time, the
physical domain of interest is divided into a set of non-
overlapping, quadrilateral control-volumes. Figure |
shows the control-volume surrounding the main grid
point P and shows the designation used for the neigh-
boring nodes. In constructing the control-volumes in
the physical coordinate, the positions of the corner
points of the control-volumes are deployed first in
accordance with the predetermined control-volumes
in the transformed coordinate. Then, all the corner
points are connected by straight lines assuming piece-
wise linear transformations between the corners. The
main grid point for the scalars is located at the geo-
metrical center of each control-volume. The positions
locating the velocity components are placed midway
between the corner points.

Figure 2 illustrates a typical moving control-volume
in the physical coordinate, where the quadrangle
A°B°C®D" is the old control-volume at time ¢° and
the quadrangle ABCD is the new control-volume after
an clapsed time of Ar. These two moving control-
volumes correspond to a single control-volume that
is stationary in the transformed coordinate. The

+ For example, even when x = £ and y = n, these relations
can beinterpreted as x = (unit length) x £, etc. Subsequently,
the product of velocity and length will be called velocity for
the sake of brevity.

o N° o
n (&)
(A'n)P wo w P° e Ecw
s &)
t | s? g
(R)w (88)e
(b)

F1G. 1. Configuration of the control-volumes in the physical
coordinate (a) and in the transformed coordinate (b).

FiG. 2. A schematic of the moving control-volume in the
physical coordinate.

following area rule holds between the two moving
control-volumes shown in Fig. 2:

m(ABCD) —m(A°B°C°D®)—m(44°D°D)

+m(BB°C°C)—m(BB°A°4)+m(CC°D°D) = 0
4

where the absolute value of m{(4BCD) denotes the
area enclosed by the quadrangle ABCD (positive if
ABCD rotates counter-clockwise and negative other-
wise).

2.3. Continuity equation
The discretized continuity equation (for ¢ = 1 and
S = 0) is obtained by integrating equation (3) over
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the stationary control-volume in the transformed
coordinate. This gives

pe(AV)p—pp(AV )P
At

where (AV)p = Jp(A&)p(An)p is the area of the quad-
rangle 4BCD and (AV)} is that of the quadrangle
A°B®C°D® The discretized representation of F
values requires a special treatment due to the existence
of pseudo-velocities. Consider first the cases in which
the continuity equation is trivially satisfied (i.e.
p = constant and u = v = 0) as occurring in diffusion-
controlled moving-boundary problems. It is then con-
venient to introduce X, and Y, such that

+F,—F,+F,—~F.=0 (5)

X = YnXy Xy Ve Y, = XYy —VeXy (6)

which represent the contravariant pseudo-velocities
normal to the constant £- and n-coordinate lines,
respectively. For this special case, the discretization
of X, and Y, should be made in such a way that
equation (5) becomes identically zero. This can be
done by evaluating all the terms in equation (5) at the
same time (¢°4A¢/2), i.e. interpreting an implicit-
difference as a central-difference representation with
respect to time (¢°+A#/2) [7]. Therefore, X, is dis-
cretized as

— 12y 1,
X:,e - yfg.é x:,e‘x:(g,é Yie

1
= 2A7 {(Dpe +200) (e = x0) = (e + 58 (e =00}
N

which makes the quantity X, (An)»(A?) equal to the
positive (or negative) value of the area swept by line
AD during the time interval A¢, i.e. m(44°D°D) in
Fig. 2. Other pseudo-velocity terms X ,,, ¥,, and Y,
are also discretized similarly. Note that the present
discretization of the pseudo-velocities simply rep-
resents the area rule given in equation (4), thus
enabling equation (5) to become identically zero. The
final expressions for F values will be shown later.

2.4, General conservation equation

In this section, the discretization procedure for a
general dependent variable ¢ other than the velocity
components is described. The integration of the trans-
formed equation (3), with the aid of the discretized
continuity equation (5), gives

app = apdp+awdw +andnt+asds+b+byo  (8)
with
ap = ag+aw+an+as+al —Sp(AV)p
ap = pp(AV)PjAL
ag = D A(F,/D,)+max {0, — F,}
aw = D A(F, /D) +max {0, F,}
ay = D, A(F,/D,) +max {0, —F,}
as = D,A(F,/D,)+max {0, F.;}
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b = apdp+Sc(AV)p
brno = — 0, +Q,—Q, +Q,

D, = Xeelc(Bme _ 2 D (Ane
C he(80). T YT hew(80)
_%aln(@8e 2%, Tu(Ae
" hmn (5n)n ’ : h’LS (5")<

where Sp and S¢ arise from the linearized source terms
and the function 4(x) used here is that of the power-
law scheme [5]:

A(x) = max {0, (1 -0.1{x{)*}. )}

The term by arises from the non-orthogonality of the
coordinate system in the physical plane [6]. To obtain
the five-point formulation, byo is treated as a source
term and is evaluated explicitly using a piecewise
linear profile for ¢ [6], e.g.

- ﬂ [ rc
h’!-s

Qc (éne - ‘ésc) . (10)
The above set of discretization equations is very simi-
lar to those in ref. [5], and the same solution procedure
explained there can be applied, but with special care

given to the evaluation of af and F values.

2.5. Momentum equations

If the transformed equation (3) is written for the
Cartesian velocities, # and v, as the dependent vari-
ables in the momentum equation, these variables can
be treated as scalars because their directions do not
change [8]. Therefore, the discretization procedure
outlined before can be used with the associated source
terms. Now, referring to Fig. 3, the discretization
equations for the é- and n-momentum equations, with
u and v as the dependent variables, are (diffusion
conductances and flow terms are identical except for
the source terms [6])

9,0
. AUy = Zanbunb+ae U, +bu

0,,0
dele = z AnbUnp +ae Ve +bu

(in

Fi1G. 3. Control-volumes for the discretization of the velocity
component u,.
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where nb denotes all the neighboring points (ee, w,
Ne and Se) and the source terms b, and b, are properly
evaluated.

The physical covariant velocity components #; and
u,, the directions of which are along the coordinate
lines, are related to u and v as

(12)

and the motivation for the use of these velocities is
discussed in ref. [8]. The discretization equation for
the covariant velocity component u;, is obtained, as
suggested in ref. [6], by algebraically combining the
discretization equations for u and v in equation (11).
The final discretization equation for u,, becomes

ui = (x5u+y€v)/h§, u,} = (x,’u”*"y"v),[h,,

— 0,0
AU, = Z Anvliz b+ G Uz + Bz vp

+bsno+ A (Pp—Pg)+ 8. (13)

where
bems = al(Mug.+MJu;.)
beno =3 aup (s — Usdor — Qe g + Qe p — Qg e + Qe

)
= he(00),

and S;, is the discretized source term excluding the
pressure gradient. The expressions for M}, M, M,
and M, are given in the Appendix. The velocity u; is
interpreted as the neighboring velocity component
parallel to u;. [6, 8]. The source term by arises
from the time-wise rotation of the velocity-component
base-vectors associated with the movement of the con-
trol-volume faces. If the control-volumes move par-
allel to their old positions by pure displacement, then
b;up becomes zero because M{ = M? =0. The
source term b; o is determined using the continuity-
satisfying velocity fields from the previous iteration
{6]. The Q; terms in b, o are expressed similarly to
equation (10} as

ué—u{ = M,fug‘{'M,’u,,, Ae

ﬁé,ErE

h (ulé.nE _ué,sﬁ)’
nE

Qg = etc.

14

The discretization equation for v, , can be obtained
similarly. The final results are

Aullyn = ¥ Guothy oo+ AoUS s + by s + by o
+A,(Po—Py)+S,, (15
where
bymp = ay(N§ul, +NJul,)

bn.NO = z anb(u:y - uq)nb - Qn,ne +Qq,nw _Qq,N +QQ,P

P AV)a
U, —u, = Nfuf +N,,u,,, A, = m
and Q, terms in b, no are expressed as
11 r ad
Qe =Pielee i), ee 6)

hﬂ»ﬂc

The expressions for NZ, N)), N; and N, are listed in
the Appendix.

In the discretized momentum equations, the vel-
ocity components along the control-volume faces
(such as u;, and u,.) are linearly interpolated from
the continuity-satisfying velocity fields obtained in
the previous iteration [6]. The solution of the above
discretized momentum equations requires the
specification of the pressure field. Unless this pressure
field is correctly specified, the resulting velocities will
not in general satisfy the mass continuity and the
pressure correction equations are needed. These equa-
tions are obtained from the discretized continuity
equation (5) rewritten in terms of ¥, and u,. Therefore,
U and V are expressed as

U =ou;—fett,—X,, V=cu,—Bu:—7%, (17)
from which the flow terms F are determined as
F, = p{osuy—Bou, — X)(An)e (18)

and so forth. Then, the discretized continuity equation
(5) becomes [using (An)p = (A)p = 1, for brevity]

(pafué)e - (P“zuf)w + (par]uﬂ)n - (Paquq)s = bNO
(19

where

bNO = (pﬁ{ur/)c - (pﬂéuq)w + (pﬂquf)n - (pﬂnu{)s
(20)

is evaluated using the continuity-satisfying velocity
field from the previous iteration [6]. Note that the
terms associated with the moving control-volumes
(i.e. X, and Y,) have disappeared in equation (19) from
the assumption of constant density. The SIMPLER
algorithm [5] is used to obtain the velocity field
by coupling the continuity and the momentum equa-
tions. Details of the treatment of the source terms {i.e.
S;. and S, ), the pressure correction equation, the
pressure equation and the overall solution procedure
can be found in refs. [6, §].

3. EXAMPLE PROBLEM

In the above discretization formulation, no par-
ticular type of moving boundary was explicitly speci-
fied, thus making this treatment of moving boundaries
very general. Therefore, the method presented is appli-
cable to problems with a multiple number of moving
interfaces. These interfaces can be those between
immiscible fluids, between fluids and solids, as well
as phase-change interfaces of a single-component
substance.

In order to validate the present numerical method,
a specific phase-change problem involving natural
convection is solved and compared with the available
experimental results. The example problem is taken
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from the numerical and experimental study of Benard
et al. [3].

3.1. Problem description

The experiment of Benard et al. [3] is schematically
shown in Fig. 4, where the top and bottom surfaces
are insulated. The depth of the enclosure (in the z-
direction) is taken sufficiently larger than its height
and width, in anticipation that the heat transfer and
the fluid flow are two-dimensional. The enclosure is
initially filled with the solid phase, leaving an air
gap on top to allow for the volume expansion upon
melting. The solid is initially at a uniform temperature
T, below the melting temperature 7. At 1 = 0, the
temperature of the left wall (£, =0) is raised to a
value T, > T, while the right wall (£, = W) is main-
tained at the initial temperature T,. Then, the melting
front %, proceeds towards the cold wall X, until a
stationary interfacial front is attained. During the
melting process, the volume expansion causes the free
surface of the liquid to rise and flow over the solid
phase, as illustrated schematically in Fig. 4.

3.2. Numerical analysis
3.2.1. Coordinate system. The transformed co-
ordinate used in the analysis is

&x for0<é<1
FE R (E=D)(E—%) forl <E<2

nH foro0<n<|I
YEVYH+G-DL for1<n<2 @n

where L is the thickness of the liquid overflow region
and is assumed to be a function of time only, i.e. the
free surface of the liquid overflow is horizontal at all
times. Therefore, there are two moving boundaries in
the present analysis; one is the phase-interface and
the other is the free surface of the liquid overflow.
Figure 4 shows the distribution of the liquid and solid
phases, and the position of the interface in both co-
ordinate systems. In the transformed coordinate, the
interface is located at £ = 1 for 0 < # < 1. The vertical

0 w
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surface through which the liquid flows over the solid
phase is named here as an outlet, and this outlet
is located at X, = (X,),_, for H< y < H+ L in the
physical coordinate and at £ = 1 for | <5 < 2in the
transformed coordinate, respectively, as is also shown
in Fig. 4. The liquid overflow region above the solid
(shaded in Fig. 4) is neglected in the simulation except
in the evaluation of L.

3.2.2. Treatment of the moving interface. The inter-
facial mass and energy balances are directly derived
from equation (3) considering the continuity of the
¢-component of the fluxes across the interface. The
results are

(pU), = (pU), =G,

akdT\ (kT
(pUh he 6{), —<pUh— he ), (23)

where all the quantities are evaluated at the interface
and G, is the interfacial mass flux. The discretized
form of equation (23) is used to determine G,. The
use of the power-law scheme requires tedious trial and
error, thus here the central-difference scheme is used
because it gives an explicit expression for G, [1]. It is
then required for consistency that, for the grid points
adjacent to the interface, equation (8) be rewritten
in central-difference form in the case of ¢ =4 (or
¢6=T).

Because (4,), = 0 at the interface, equation (22)
becomes

- G, . 1 < p2>ﬂ
X,=—— and (&), = —~—{1—-"]X,
P2 ( g)l (“:)1 P

the first of which is used to determine the interface
position (see ref. [1] for details), and the second serves
as the boundary condition for the velocity field in the
liquid phase.

3.2.3. Boundary conditions. The thickness L is deter-
mined from the conservation of the total mass (includ-
ing the liquid overflow above the solid phase)

(22)

(24)

P W(L—L"+(p, _Pz)L (/‘}zAt)gz 1dnp =0 (25)

n
2
Phase 1
1 -
Phase 2
3
0 1 2

F16. 4. System geometry for the example problem and the corresponding transformed coordinate system.
The shaded area represents the liquid overflow region neglected in the analysis.
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Table 1. Variables in the dimensionless governing equations
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Table 2. Dimensionless parameters in the example problem

p*  o* r#* S* Parameter Numerical value
Liquid 11 0 0 W/H 0.389
u* 1 —JP*/0x* Pr 52.14
v* 1 —3P*[3y* + (Ra/Pr)T% Ste 0.0694
T* Pr! 0 Ra 0.846 x 10°
Solid pe 1 0 0 P, 1.051
T3 (kije) Pr! 0 ¢ 0.864
k, 2.484
T* 1
> 0
T* —2.395
where X, is determined explicitly from equation (24).
The absolute value of the integrand in equation (25)
represents the area swept by the interface during
the time interval Az. Subsequently, all the geometric 3.2.4. Solution procedure. The dimensionless

factors including pseudo-velocities are calculated
from the known values of £, and L.

In addition to the interfacial mass and energy bal-
ances, the following boundary conditions are used :

Leftwall: u=v=0, T, =T, (26)
Rightwall: 7,=T, 27
oT, T
Bottomwall: w=0v=0, a—y‘=~éyi=0 (28)
. Ou or, 0T,

Top wall: @—0, U = Dyop, E—E—O
(29)

Interface: wu; = (d),, u,=0, T,=T,=T,
(30)
Outlet: wu; =uo, u,=0, T,=T,. (31

The boundary velocity (), is determined explicitly
from equation (24). The value of v,,, is obtained from
the kinetic boundary condition at the top free-surface,
which can be expressed as V=0 at 5 = 2 since no
mass can cross this surface. As given in equation (31),
the boundary conditions at the outlet are taken to be
the same as those at the interface, except for u;. The
velocity u,,, is assumed to be uniform over the outlet
and its value can be obtained from the mass balance
over the liquid phase alone:

1

2
L pi(U+ X)) dn+f0 p1(V+Y),..dl=0
(32)

where U+ X, and V+ Y, denote the physical con-
travariant velocity components (excluding the
pseudo-velocities). The effect of these arbitrarily
imposed boundary conditions at the outlet is negli-
gible because the size of the outlet is very small
(L/H < 0.03 in this example). The major weakness of
the simulation rather results from the adiabatic ther-
mal boundary condition at the top surface of the solid
phase, and this point will be further discussed later.

governing equations are summarized in Table 1
assuming laminar natural convection in the melt as in
ref. [3]. The boundary conditions (26)—(31) are also
transformed and discretized. Table 2 lists the numeri-
cal values of the dimensionless parameters corre-
sponding to the experiment in ref. [3]. A non-uni-
formly spaced 22 x 34 grid is used in the liquid phase
and a 22 x 31 grid in the solid phase; therefore, the
liquid overflow region has three grid points in the #-
coordinate direction. To initiate the computation, a
one-dimensional pure conduction problem is solved
until %,/W = 0.02, after which laminar natural con-
vection is included. It is found that the subsequent
solutions are not sensitive to the value of this pre-
scribed initial thickness. The following procedure is
employed for the solution:

(i) Determine the interface position explicitly
from equation (24). In doing this, the temperature
distributions in the liquid and solid phases are assumed
constant during a time interval (Af).,.

(ii) Solve the temperature field in the newly-defined
solid phase and go back to step (i) without the solution
in the liquid phase. Repeat steps (i) and (ii) for a
number of time intervals until ¢ = ¢°+ N(Af),, where
N = 20 is chosen.

(iii) Solve the heat transfer and the fluid flow in the
liquid phase with the time interval (Af), = N(Af),.
Note that, at this stage, the interface positions at both
t=1%and t = t°+(Ar), are necessary to determine
the pseudo-velocities in the liquid phase.

(iv) Repeat steps (i)—(iii) until a stationary interface
position is attained.

The maximum value of the dimensionless time step
(At*), used in the computation is 0.1, where the
dimensionless time is defined at ¢* = vt/H?, for
v=4.806x10"°m?s~'and H = 0.177 m. The use of
different time steps for each phase is similar to that
in ref. (3] and it enables a precise resolution of the
temperature distribution within the solid phase in
which the effects of the transient terms are more
significant than in the liquid phase.
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(b)

Fi16. 5. The transient positions of the interface at various elapsed times. {a) Experimental (solid lines) and
numerical (dashed lines) results from ref. [3] and numerical results from this study (dotted lines). (b)
Present numerical results for the adiabatic case (solid lines) and the saturation temperature case (symbols).

3.3. Resulis

Numerical results are presented graphically as the
positions of the interface at various elapsed times.
This selection is made because the interface positions
are gradient-controlled, and are thus the most diag-
nostic of the simulation (as compared to the dis-
tribution of the temperature- and velocity-fields).
Figure 5(a) shows the numerical results for the inter-
face position at various elapsed times for 0 < y/H < 1.
The experimental and numerical results from ref. [3]
are also shown for comparison. In general, our
numerical results agree well with the experiment in
the lower part of the interface, while there is less
agreement in the upper part. The same trend is also
found in the numerical results of ref. [3]. Benard ez al.
[3] have claimed that the disagreement between their
experimental and numerical results is due to the
neglected non-orthogonal terms. However, we note
that our method accounts for these terms, yet the local
disagreement remains. Compared with the numerical
results of ref. [3], the present method predicts slower

movement of the interface. This is expected to be
mainly due to the inclusion of non-orthogonal terms.
The density difference and the liquid overflow slightly
reduce the melting capacity of the liquid phase, but
their influence on the movement of the interface is
relatively small.

As was mentioned, the volume change causes the
melt to flow over the solid phase through the outlet.
Therefore, the boundary condition at the top surface
of the solid phase varies with time, initially being that
of nearly no heat flow across this surface (due to the
presence of the air gap), and then that maintained
nearly at the saturation temperature {(due to the flow
of the liquid over the solid). Also, the shape of this
initially horizontal surface is continuously changing
due to the fact that the flow of liquid over the solid
phase results in heat transfer to the subcooled solid
and, as a result, phase-change occurs at that surface.
Therefore, the adiabatic thermal boundary condition
assumed at the top surface of the solid phase, i.c.
d0T,/0y = 0 in equation (29), is no longer valid. This
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boundary condition should be modified in order to
accurately predict the experimental results. To do this
with a reasonable effort, the adiabatic condition is
changed to the constant saturation-temperature con-
dition, i.e. T, = T, (with other boundary conditions
unchanged). This boundary condition is also sug-
gested and used in ref. [3]. The present numerical
results obtained by using this modified boundary con-
dition are shown in Fig. 5(b), where those obtained
by using the adiabatic boundary condition are also
redrawn for comparison. Note that the change in the
boundary condition has a negligible effect on the inter-
facial motion in the lower part. However, in the upper
portion of the enclosure, the interface moves sub-
stantially faster than that of the adiabatic boundary
condition. Near the upper portion of the interface, the
modified boundary condition causes the temperature
gradients (normal to the interface) of the solid-phase
to decrease significantly compared with those of the
adiabatic boundary condition. Then, this locally
reduced temperature gradient results in an increase in
the melting rate of the solid (through the interfacial
energy balance). This increased melting rate acceler-
ates the local movement of the interface, as is evident
in our numerical results given in Fig. 5(b), but we note
that the numerical simulations of ref. [3] show no
difference in the predicted interfacial locations, where
both of the above-mentioned boundary conditions
are used. This discrepancy will remain unsolved until
more information becomes available on the imple-
mentations in ref. [3].

The present results suggest that neither of the two
boundary conditions (adiabatic and saturation-tem-
perature) at the top surface of the solid phase correctly
simulates the experimental boundary condition there,
The local disagreements with the experiment are
expected to arise from the assumptions of the two-
dimensionality of the system and the laminar flow
regime, the neglected liquid-overflow above the solid
phase and the use of the constant physical properties
in the simulation.

4. SUMMARY

A numerical method is developed that is applicable
to both diffusion- and convection/diffusion-con-
trolled moving interface problems and accounts for
the density difference between phases. A general co-
ordinate transformation is employed to immobilize
the moving interfaces. The resulting transformed
equation is expressed in a conservative form and
reflects the conservation principles in a moving, curvi-
linear control-volume in the physical coordinate.
Therefore, even when the physical quantities such as
density, velocity, enthalpy and transport properties
change discontinuously across a given moving inter-
face, the interface conditions become no more than
the natural boundary conditions. This is because the
components of the fluxes in the transformed equation
are continuous across that interface. Moreover, since

the transformed equation is developed only for a rep-
resentative physical domain, a system made of a mul-
tiple number of moving interfaces can be treated with-
out any further effort.

In deriving the finite-difference equations, the trans-
formed governing equation is first integrated over the
stationary control-volume in the transformed coor-
dinate, and those integrated terms are then interpreted
physically and discretized using the moving control-
volume in the physical coordinate. For example, the
pseudo-velocities arising from the immobilization of
the moving interfaces are discretized according to the
geometrical relation associated with the moving con-
trol-volumes. This special treatment of the pseudo-
velocities has two major advantages. First, the
pseudo-velocity fields independently satisfy the mass
continuity regardless of the existence of the physical
velocity fields. Then, diffusion-controlled moving
boundary problems can be resolved without any cre-
ation of the parasitical mass sources. Second, the cases
in which the physical domain boundaries move in
both coordinate directions can be easily treated. The
momentum equations are solved by using the physical
covariant velocity components as dependent vari-
ables. However, the general transformed equation
employed in this study can also accommodate the
stream function—vorticity formulation, because the
present treatment of the pseudo-velocities is still appli-
cable. In the grid system composed of moving control-
volumes, the directions of the base-vectors for the
covariant velocity components change in time and
space. The time-wise rotation of the velocity-com-
ponent base-vectors is handled here by an algebraic
manipulation, similar to the treatment of the spatial
variation of those base-vectors suggested by others.

The method is applicable to two-dimensional prob-
lems with multiple, moving interfaces. Here, the solu-
tion method is tested against an example problem
for which experimental results are available. For the
combined convection and diffusion flux terms, the
central-difference scheme is applied to the interfacial
energy fluxes while the power-law scheme is used
otherwise. The numerical results agree well with the
available experimental results.

REFERENCES

1. C.-J. Kim and M. Kaviany, A numerical method for
phase-change problems, In:t. J. Heat Mass Transfer 33,
2721-2734 (1990).

2. E. M. Sparrow, S. V. Patankar and S. Ramadhyani,
Analysis of melting in the presence of natural convection
in the melt region, J. Heat Transfer 99, 520-526 (1977).

3. C. Benard, D. Gobin and A. Zanoli, Moving boundary
problem : heat conduction in the solid phase of a phase-
change material during melting driven by natural con-
vection in the liquid, Int. J. Heat Mass Transfer 29, 1669~
1681 (1986).

4. M. Lacroix, Computation of heat transfer during melting
of a pure substance from an isothermal wall, Numer. Heat
Transfer 15B, 191-210 (1989).

5. S. V. Patankar, Numerical Heat Transfer and Fluid Flow.
Hemisphere, Washington, DC (1980).



466 C.-J. Kim and M. Kaviany

6. K. C. Karki and S. V. Patankar, Calculation procedure
for viscous incompressible flows in complex geometries, M = h'f_ Feeke = Xee s
Numer. Heat Transfer 14, 295-307 (1988). T\ J

7. E. M. Sparrow and W. Chuck, An implicit/explicit
numerical solution scheme for phase-change problems,
Numer. Heat Transfer 7, 1-15 (1984).

8. K. C. Karki, A calculation procedure for viscous flows at
all speeds in complex geometries, Ph.D. Thesis. University
of Minnesota, Minneapolis (1986).

where M, and M, are evaluated at the eight neighboring
points (ee, w, Ne, Se, nE, sE, n and s in Fig. 1} and where
M? and M) are evaluated only for the point e.

Similarly, the expressions for N, NJ, N; and N, for the
velocity component u, , are
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! A J? where N, and N, are also evaluated at the eight neighboring
i points (nE, nW, nn, s, Ne, ¢, Nw and w in Fig. 1) and where
M. = (hf )fs_l";_v“j_" 1 N? and N} are evaluated only for the point n.

UNE METHODE NUMERIQUE POUR LES PROBLEMES DE CHANGEMENT DE PHASE
AVEC CONVECTION ET DIFFUSION

Résumé—Une formulation existante aux différences finies qui utilise 'immobilisation de 'interface, pendant
la préservation de la forme conservative des équations, est étendue pour inclure la convection et le
changement de volume. Dans ce traitement bidimensionnel, les frontiéres physiques se déplacent dans les
deux directions. Cela est permis par une technique nouvelle qui discrétise les pseudo-vitesses (du fait de
I'immobilisation) en accord avec la relation géométrique associée aux volumes de contrdle mobiles. Les
champs des pseudo-vitesses satisfont indépendamment la continuité de masse. Cela rend la méthode
numeérique adaptée aux problémes de frontiére mobile avec diffusion et diffusion convection. Dans la
résolution des équations de quantité de mouvement, les composantes covariantes de vitesse sont choisies
comme variables dépendantes et ’algorithme SIMPLER est utilisé pour le couplage entre les équations de
continuité et de quantité de mouvement. La méthode est applicable aux problémes avec plusieurs interfaces
mobiles. En exemple, on considére une fusion dans une cavité bidimensionelle. Les prédictions sont
comparées avec des résultats expérimentaux disponibles et on trouve un accord satisfaisant.

EIN NUMERISCHES VERFAHREN ZUR LOSUNG VON
PHASENWECHSELPROBLEMEN MIT KONVEKTION UND DIFFUSION

Zusammenfassung—Ein vorhandenes Finite-Differenzen-Modell, welches auf einer Festlegung der sich
fortbewegenden Grenzfliche bei gleichzeitiger Beibehaltung der Erhaltungsgleichungen aufbaut, wird
in der vorliegenden Arbeit erweitert um Konvektion und Volumendnderungen beriicksichtigen zu
koénnen. In dem zweidimensionalen Modell ist es den physikalischen Berandungen mdglich sich in
beiden Koordinatenrichtungen zu bewegen. Dies wird mit Hilfe einer neuen Methode verwirklicht, bei
der die Pseudogeschwindigkeiten (aufgrund der Festlegung) diskretisiert werden—abgestimmt auf die
geometrische Situation und die sich bewegenden Kontrollvolumina. Dadurch befriedigen die Felder der
Pseudogeschwindigkeit unabhingig die Massenerhaltung. Das vorgestellte numerische Verfahren kann
somit auf Probleme mit beweglichen Berandungen angewandt werden, die entweder durch Diffusion oder
durch Konvektion und Diffusion beeinfluBt werden. Bei der Losung der Impulstransportgleichung werden
die physikalischen kovarianten Geschwindigkeitskomponenten als abhéngige Variable gewihit. Fiir die
Kopplung zwischen der Kontinuitédtsgleichung und der Impulstransportgleichung wird der SIMPLER-
Algorithmus verwendet. Diese Methode ist fiir Probleme mit mehreren sich bewegenden Grenzflichen
verwendbar, Als anschauliches Beispiel wird der Schmelzvorgang in einem zweidimensionalen Hohlraum
betrachtet. Die Rechenergebnisse werden abschlieBend mit verfiigbaren Versuchsdaten verglichen, die
Ubereinstimmung ist gut.
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UYMCJIEHHBI METOJI PENIEHM S 3AJAY ®A3IOBOT'O MEPEXOLA MPU HAJIMYMM
KOHBEKIIMK U JTHODPYINU

Amnoramms—CyniecTyIOmHil METON KOHEYHBIX PA3HOCTEH, B KOTOPOM KCTIONL3YETCH PUKCAIHS JBHXY-
elCs TPaHMILI Pa3fieia ¢ COXpaHEHHEM KOHCEPBATHBHOTO BHIA ypaBHeHMH, 06o6wmaercs Ha ciyvait
y4eTa KOHBEKLIMH B M3MEHEHHS 06beMa. B mpemnoxenHoli nBymepHoi GopMyIHpoBKe nmpeanoaraeTcs
aBHXeHAE (H3IMYECKAX I'DaHMIl B HaNmpaBiieHAH ofeux koopauHat, C 3TOH LENbIO NPEMEHAETCH HOBBIH
METOJ, B KOTOPOM ICEBAOCKOPOCTD (BOIHHKAIOMAs 33 CYET YMEHBINEHHS MOABIKHOCTH) MPHBOIMTCH K
IHUCKPETHOMY BHIY MO TeOMETPHYECKOH 3aBHCHMOCTH, CBA3AHHOM C HBHXXYLUMMHCA KOHTPOJILHLIMH
obseMamu. B pesysipTaTe NONSA NCeBAOCKOPOCTEH CAMOCTOATENLHO YAOBIIETBOPAIOT YCJIOBHIO MAacCOBO#
HenpepsIBHOCTH. biiarosaps sToMy dakTy NpeanoXeHRbIH TUCACHHBI METOI ABIAESTCH MPATOARLIM LTS
peleHns 3a1ay, B KOTOPbIX ABHXEHHE TPAaHALBI onpenensercs Mubdy3ueit, a Takke kOHBeKUMeH # Tud-
¢yswueit. TIpu pemeHAn ypaBHEHHN COXpaHEHHS HMITYJIhCa NMPEANONATaeTcs, YTO (PHINYECKHE KOMITO-
HEHTB! KOBADHAHTHON CKOPOCTH SBJIAIOTCSA 3aBHCMMbBIMH NEPEMEHHBLIMH H [ CONPSKEHHA ypaBHCHUI
HEPa3PBIBHOCTH ¥ COXPAHEHHMS HMITYJIbCa HCNOJbL3yeTcs anroput™ SIMPLER. PaspaGoranusii Meton
MOXET MPUMEHATBCH K 3aa4aM CO MHOXECTBEHHBIMH JBHKYILMMHECA PAaHHUAMH pa3fena. B kadecrse
WLUTHOCTPHPYIOLIEr0 NPHMEpPa PacCMaTPHBAETCS NMPOLECC NAABJICHHS B AByMepHoOit nosocty. [Monyueno
XOpolllee COTaCHMe MEXAY pPacYeTHBIMM pe3yJbTATaMH M  MMEIOLIMAMHCS IKCIePHMEHTAIbHBIMA
IaHHBIMH.
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