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Abstract-An existing finite-different formulation, which uses immobilization of the moving interface 
while preserving the conservative form of the equations, is extended here to include convection and volume 
change. In this two-dimensional treatment, the physical boundaries are allowed to move in both coordinate 
directions. This is done by using a novel technique that discretizes the pseudo-velocities (arising from the 
immobili~tion) according to the geometrical relation associated with the moving control-volumes. As a 
result, the pseudo-velocity fields independently satisfy the mass continuity. This makes the present numeri- 
cal method suitable for both diffusion- and convection/diffusion-controlled moving boundary problems. 
In the solution of the momentum equations, the physical covariant velocity components are selected as 
the dependent variables and the SIMPLER algorithm is employed for the coupling between the continuity 
and the momentum equations. The method is applicable to problems with multiple, moving interfaces. As 
an illustrative example, melting in a two-dimensional cavity is considered. The predictions are then 

compared with the available experimental results and good agreements are found. 

1. INTRODUCTION 

ONE OF THE finite-difference methods introduced 
recently for two-dimensional moving interface prob- 
lems [I] uses a coordinate transfo~ation that pre- 
serves the conservative form of the governing equa- 
tions. The development in ref. [l] focuses on diffusion 
only and, although not an inherent limitation, it 
allows for the movement of physical domain bound- 
aries in a single coordinate direction. In this study, 
we extend the treatment to include convection and 
volume change, and to allow for the movement of the 
~unda~es in both coordinate directions. 

A variety of numerical methods are available for 
treatment of convection/diffusion phase-change prob- 
lems ; however, they suffer in generality of application 
and in accuracy. Sparrow et al. [2] give the first 
numerical analysis of phase-change problems 
accounting for natural convection in the melt. In their 
work, the slope of the interface is neglected and tem- 
poral inte~olation of the known fields (velocity and 
temperature) is required to update the unknown 
fields. In the numerical study of Benard et al. 131, 
natural convection in the melt is coupled with heat 
conduction in the solid phase. The non-orthogonal 
terms resulting from the use of a coordinate trans- 
formation are neglected. Steady state is assumed in 
the liquid phase while the transient terms are included 
in the solid phase, i.e. two different solution methods 
are applied. Lacroix [4] uses the stream function- 
vorticity formulation and includes the transient and 
the non-orthogonal terms in the transformed equa- 
tions expressed in non-conservative forms. The accu- 
racy of this method is not examined by, for example, 
applying the conventional test on the diffusion-con- 

trolled phase-change problems for which analytical 
solutions are available. In general, the drawbacks of 
these numerical methods (and other available 
methods) are that the transformed equations are 
expressed in non-conservative forms and that the 
interface conditions are treated separately from the 
transformed equations. Therefore, their formulations 
weakly satisfy the conservation principles. Also, the 
density difference between phases, which can be 
significant in some cases, is not included. 

In order to overcome the shortcomings mentioned, 
we employ a general transformed equation which pre- 
serves the conservative forms of the original governing 
equations. Also, we derive the interface conditions 
directly from the continuity of the fluxes in the trans- 
formed equation. As a result, the present numerical 
fo~ulation is consistent with the well-established 
solution methodology for problems with iixed bound- 
aries (e.g. Patankar [5]). In deriving the discretization 
equations, the moving control-volumes in the physical 
coordinate as well as the stationary control-volumes 
in the transformed coordinate are used. The pseudo- 
velocities arising from the immobilization of the mov- 
ing boundaries are discretized in accordance with the 
geometrical relation associated with the moving con- 
trol-volumes. Then, the pseudo-velocity fields satisfy 
the continuity equation independent of the physical 
velocity fields. Therefore, both diffusion- and con- 
v~tion/diffusion-controlled moving interface prob- 
lems can be solved with a unified approach. Moreover, 
a multiple number of moving boundaries can be easily 
treated. For the computation of the fluid motion, an 
efficient calculation procedure recently proposed by 
Karki and Patankar [6] is adopted and modified 
accounting for the moving boundaries. 
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NOMENCLATURE 

A area term or function %“, velocity at the outlet ]m s- ‘1 

R 
coefficient in finite-difference equations AV finite-volume element 
source term in finite-difference equations 40p vertical velocity of the free surface 

C specific heat capacity [J kg- ’ K _ ‘1 [ms -‘I 

c, ratio czjc, W width [m] 
D diffusion conductance X,, Y, contravariant pseudo-velocities 
F flow term s, y, z spatial coordinates [m] 

6, mass flow rate across the interface P , .$I, YI pseudo-velocities [m s- ‘1 
H initial height of the material [m] x*, y* dimensionless coordinates, x/H, y/H 

h specific enthalpy [J kg- ‘1 .ii position of the boundary with 
it,, latent heat of liquid/solid phase change i = 0, I, 2, [ml. 

[J kg-’ ‘1 
h,, h, geometric factors Greek symbols 

i Jacobian CI thermal diffusivity [m’s_ ‘1 

k thermal conductivity mm- ’ K- ‘1 c+, tLq geometric factors 

k, ratio k2/k, PC, & geometric factors 

L thickness of the liquid overflow region I- effective diffusion coefficient 

[ml q transformed coordinate 

h4, N geometric factors 1 geometric factor 

P pressure [Pa] V kinematic viscosity [m” s- ‘1 

P* dimensionless pressure, PH2/p,v2 4 transformed coordinate 

Pr Prandtl number, V/E, P density [kg mm- ‘1 

Ra Rayleigh number, gfl(fO- ?,)H3/(a,v) pr ratio P 2/p I 
s source term cb general dependent variable 

Ste Stefan number, c,(fO-- r”,)/k,, fz integrated non-orthogonal term. 

T,(T,) temperature distribution in the 
liquid (solid) phase [K] 

Superscripts 

pO( p2) temperature at the hot (cold) vertical 
0 known quantities at the old time 
* 

wall [K] 
dimensionless quantities I 

PI melting temperature of the material [K] 
quantities at the boundary. 

T? dimensionless temperature, Subscripts 

(T-- f,)i(p”- ii,) 1 liquid 
?T dimensionless temperature at the 2 solid 

boundary R,, (pi- ?,)/(p”- ‘?,) e, w, n, s east, west, north, and south 
t time [s] control-volume faces 
t* dimensionless time( = vt/H’) E, W, N, S east, west, north, and south grid 
At time increment [s] points 
U, Y relative, contravariant velocities MB moving-bounda~ term 
24, 0 Cartesian velocities [m s- ‘1 NO non-orthogonal term 
u*, v* dimensionless velocities, uH/v, vH/v nb neighbor 

us. ug covariant velocity components [m s- ‘1 P grid point under consideration. 

As an application of the present numerical method, (? 
melting in a two-dimensional cavity driven by the -W4+ ; (~~~-r~) dt 
coupling of heat conduction in the solid phase and I \ 
natural convection in the liquid phase is considered. 
For this example, the results of an experiment are 
available 131. In the numerical analysis, the density 
difference between phases and the overflow of the 
Iiquid are also included using a simple model. 

2. NUMERICAL FORMULATION 

2.1. Governing equations 
The conservation equation for a general dependent 

variable 4, in two-dimensional Cartesian coordinates, 
is expressed as 

+ ~(PvQI-r~) = S(X,Y) (1) 

where F is the effective di~usion coefficient and S(x, y) 
is the source term corresponding to #. The density p 
is assumed to be constant within each physical domain 
of interest. When the boundaries of the physical 
domain move with time, it is convenient to introduce 
a general curvilinear coordinate system 

x = x(6 ?7 4, y = vce, rl, r) (2) 

so that the moving boundaries are immobilized in the 
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dimensionless? (5, q) coordinate for all times. Then, 
transfo~ation of equation (I), using equation (2), 
gives 

where 

u = Y,(u-x,~--x,@-Y,~ 

v= XC(~--YJ-Y&-x,) 

a5 = h,hi/J, a,, = h,,hg/J 

Pe = %,lJ, P, = &lJ 

h, = (x,‘+y;) I”, h, = (x,“+y,“)“* 

I.= xgx? +yrye,v,, J = -qyfl -YPG,. 

Here, x,, x,, x,,, y,, yc and ys denote partial derivatives. 
The terms U and V represent the relative, contra- 
variant velocity components normal to the constant 
<- and q-coordinate lines, respectively ; and S(& +) 
is the source term in the transformed coordinate. 

2.2. Grid system 
The grid system is a staggered-grid with the scalars 

at the center of the control-volume and the velocity 
components at its faces [5]. Thus, at a given time, the 
physical domain of interest is divided into a set of non- 
overlapping, quadrilateral control-volumes. Figure 1 
shows the control-volume surrounding the main grid 
point P and shows the designation used for the neigh- 
boring nodes. In constructing the control-volumes in 
the physical coordinate, the positions of the comer 
points of the control-volumes are deployed first in 
accordance with the predetermined control-volumes 
in the transformed coordinate. Then, all the corner 
points are connected by straight lines assuming piece- 
wise linear transformations between the comers. The 
main grid point for the scalars is located at the geo- 
metrical center of each control-volume. The positions 
locating the veiocity components are placed midway 
between the corner points. 

Figure 2 illustrates a typical moving control-volume 
in the physical coordinate, where the quadrangle 
A oB°CoDo is the old control-volume at time to and 

the quadrangle ABCD is the REV control-volume after 
an elapsed time of At. These two moving control- 
volumes correspond to a single control-volume that 
is stationary in the transformed coordinate. The 

t For example, even when x = 5 and y = q, these relations 
:an be interpreted as x = (unit length) x <, etc. Subsequently, 
the product of velocity and length will be called velocity for 
the sake of brevity. 

FIG. 1. Configuration of the control-volumes in the physical 
coordinate (a) and in the transformed coordinate (b). 

FIG. 2. A schematic of the moving control-volume in the 
physical coordinate. 

follo~ng area rule holds between the two moving 
control-volumes shown in Fig. 2 : 

m(ABCD) -m(A”BoCoDo) -m(AA’D’D) 

+m(BB’C’C)-m(BB’A’A)-t-m(CC”DoD) = 0 
(4) 

where the absolute value of m(ABCD) denotes the 
area enclosed by the quadrangle ABCD (positive if 
ABCD rotates counter-clockwise and negative other- 
wise). 

2.3. Continuity equation 
The discretized continuity equation (for Cp = 1 and 

S = 0) is obtained by integrating equation (3) over 
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the stationary control-volume in the transformed 
coordinate. This gives 

where (AQ. = JP(AL\s)P(A~)P is the area of the quad- 
rangle ABCD and (ALI): is that of the quadrangle 
A”BoCODO. The discretized representation of F 
values requires a special treatment due to the existence 
of pseudo-velocities. Consider first the cases in which 
the continuity equation is trivially satisfied (i.e. 
p = constant and u = L’ = 0) as occurring in diffusion- 
controlled moving-boundary problems. It is then con- 
venient to introduce X, and Y, such that 

which represent the contravariant pseudo-velocities 
normal to the constant t- and q-coordinate lines, 
respectively. For this special case, the discretization 
of X, and Y, should be made in such a way that 
equation (5) becomes identically zero. This can be 
done by evaluating all the terms in equation (5) at the 
same time (t’+A.t/2), i.e. interpreting an implicit- 
difference as a central-difference representation with 
respect to time (t ‘+ A~t/2) [7]. Therefore, X,,c is dis- 
cretized as 

which makes the quantity ~~,~(A~)~(Af~ equal to the 
positive (or negative) value of the area swept by line 
AD during the time interval At, i.e. m(AA”DoD) in 
Fig. 2. Other pseudo-velocity terms X,,,, Y,,, and Y,,* 
are also discretized similarly. Note that the present 
discretization of the pseudo-velocities simply rep- 
resents the area rule given in equation (4), thus 
enabling equation (5) to become identically zero. The 
final expressions for F values will be shown Iater. 

2.4. General conservation equation 
In this section, the discretization procedure for a 

general dependent variable (b other than the velocity 
components is described. The integration of the trans- 
formed equation (3), with the aid of the discretized 
continuity equation (5), gives 

ap~p=a,~,+aw~w+a,~N+as~s+b+b,, @) 

with 

aE = D,A(F,/D,)+max 10, -F,} 

a, = D,A(F./D,)+max (0, F,) 

a, = D~A(~“/D”)+rn~ (0, -F,,) 

a, = D,A(F,/D,)+max (0, Fsj 

h = ap0@ + &(A I+ 

h,, = -&+n,--n,+n, 

where S, and S, arise from the linearized source terms 
and the function A(x) used here is that of the power- 
law scheme [5] : 

A(x) = max(0,(1-0.1~.x()5~. (9) 

The term b,o arises from the non-orthogonality of the 
coordinate system in the physical plane 161. To obtain 
the five-point formulation, bNo is treated as a source 
term and is evaluated explicitly using a piecewise 
linear profile for d, [6], e.g. 

(10) 

The above set of discretization equations is very simi- 
lar to those in ref. [5], and the same solution procedure 
explained there can be applied, but with special care 
given to the evaluation of ai and F values. 

2.5. momentum equations 
If the transformed equation (3) is written for the 

Cartesian velocities, u and v, as the dependent vari- 
ables in the momentum equation, these variables can 
be treated as scalars because their directions do not 
change [8]. Therefore, the discreti~tion procedure 
outlined before can be used with the associated source 
terms. Now, referring to Fig. 3, the discretization 
equations for the g- and q-momentum equations, with 
u and v as the dependent variables, are (diffusion 
conductances and flow terms are identical except for 
the source terms [6]) 

FIG. 3. Control-volumes for the discretization of the velocity 
component u<,~. 
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where nb denotes all the neighboring points (ee, w, 
Ne and Se) and the source terms b,, and b, are properly 
evaluated. 

The physical covariant velocity components uC and 
u,,, the directions of which are along the coordinate 
lines, are related to u and u as 

ug = (x++y,W,, 3 = tx,ufY,r)lh, (12) 

and the motivation for the use of these velocities is 
discussed in ref. [S]. The discretization equation for 
the covariant velocity component uyc is obtained, as 
suggested in ref. [6], by algebraically combining the 
discretization equations for u and v in equation (11). 
The final discretization equation for uc,c becomes 

and SC,= is the discretized source term excluding the 
pressure gradient. The expressions for MT, @, M< 
and M,, are given in the Appendix. The velocity u; is 
interpreted as the neighboring velocity component 
parallel to t+ [6, 81. The source term bc,,, arises 
from the time-wise rotation of the velocity-component 
base-vectors associated with the movement of the con- 
trol-volume faces. If the ~ntrol-volumes move par- 
allel to their old positions by pure displacement, then 
bT,MB becomes zero because MF = Mi = 0. The 
source term b,,N, is determined using the continuity- 
satisfying velocity fields from the previous iteration 
f6]. The Q, terms in bC,NO are expressed similarly to 
equation (10) as 

The discretization equation for u,,~ can be obtained 
similarly. The final results are 

and a,, temS in b,,$NO are expressed as 

a %“C = J!,@2& (II;,, - u;,J, 
h 

etc. (16) 
V,“C 

The expressions for Ne, N,O, NC and NW are listed in 
the Appendix. 

In the discretized momentum equations, the vel- 
ocity components along the control-volume faces 
(such as ut,, and u,,J are linearly interpolated from 
the continuity-satisfying velocity fields obtained in 
the previous iteration [6]. The solution of the above 
discretized momentum equations requires the 
specification of the pressure field. Unless this pressure 
field is correctly specified, the resulting velocities will 
not in general satisfy the mass continuity and the 
pressure correction equations are needed. These equa- 
tions are obtained from the discretized continuity 
equation (5) rewritten in terms of ue and u9’ Therefore, 
U and V are expressed as 

v=u&-~~U~--X~, V=a,u,-/?&-Y1 (17) 

from which the flow terms Fare determined as 

and so forth. Then, the discretized continuity equation 
(5) becomes [using (Av)~ = (A& = 1, for brevity] 

(P’W,), - (PV+)w + (PC%+& - (P%,W,)s = bNo 

(19) 

where 

bNo = (/&n,)c - (P&& + (P/X&~ -(P&& 

(20) 

is evaluated using the continuity-satisf~ng vetocity 
field from the previous iteration [6]. Note that the 
terms associated with the moving control-volumes 
(i.e. X, and Y,) have disappeared in equation (19) from 
the assumption of constant density. The SIMPLER 
algorithm [S] is used to obtain the velocity field 
by coupling the contin~ty and the momentum equa- 
tions. Details of the treatment of the source terms (i.e. 
S,,= and S,,,,), the pressure correction equation, the 
pressure equation and the overall solution procedure 
can be found in refs. [6, 81. 

3. EXAMPLE PROBLEM 

In the above discretization formulation, no par- 
ticular type of moving boundary was explicitly speci- 
fied, thus making this treatment of moving boundaries 
very general. Therefore, the method presented is appli- 
cable to problems with a multiple number of moving 
interfaces. These interfaces can be those between 
immiscible fluids, between fluids and solids, as well 
as phase-change interfaces of a single-component 
substance. 

In order to validate the present numerical method, 
a specific phase-change problem involving natural 
convection is solved and compared with the available 
experimental results. The example problem is taken 
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from the numerical and experimental study of Benard 
et al. [3]. 

3.1. Problem description 
The experiment of Benard et al. [3] is schematically 

shown in Fig. 4, where the top and bottom surfaces 
are insulated. The depth of the enclosure (in the z- 
direction) is taken sufficiently larger than its height 

and width, in anticipation that the heat transfer and 
the fluid flow are two-dimensional. The enclosure is 
initially filled with the solid phase, leaving an air 

gap on top to allow for the volume expansion upon 
melting. The solid is initially at a uniform temperature 

f’z below the melting temperature ?,. At t = 0, the 
temperature of the left wall (a, = 0) is raised to a 
value f0 > F,, while the right wall (a, = W) is main- 
tained at the initial temperature fl. Then, the melting 

front _?, proceeds towards the cold wall i.2 until a 
stationary interfacial front is attained. During the 

melting process, the volume expansion causes the free 
surface of the liquid to rise and flow over the solid 

phase, as illustrated schematically in Fig. 4. 

3.2. Numerical analysis 
3.2.1. Coordinate system. The transformed co- 

ordinate used in the analysis is 

for 0 < 9 < 1 

forl<q<2 (21) 

where L is the thickness of the liquid overflow region 
and is assumed to be a function of time only, i.e. the 
free surface of the liquid overflow is horizontal at all 
times. Therefore, there are two moving boundaries in 
the present analysis ; one is the phase-interface and 

the other is the free surface of the liquid overflow. 
Figure 4 shows the distribution of the liquid and solid 

phases, and the position of the interface in both co- 
ordinate systems. In the transformed coordinate, the 
interface is located at 5 = 1 for 0 < r~ < 1. The vertical 

surface through which the liquid flows over the solid 
phase is named here as an outlet. and this outlet 
is located at i, = (a,),._,, for H <y < H+L in the 
physical coordinate and at r = 1 for 1 < rl < 2 in the 

transformed coordinate, respectively, as is also shown 
in Fig. 4. The liquid overflow region above the solid 
(shaded in Fig. 4) is neglected in the simulation except 

in the evaluation of L. 
3.2.2. Treatment of‘ the moving interjbce. The inter- 

facial mass and energy balances are directly derived 
from equation (3) considering the continuity of the 

t-component of the fluxes across the interface. The 
results are 

(pUh-yg), = (pUh-$$2 (23) 

where all the quantities are evaluated at the interface 
and e, is the interfacial mass flux. The discretized 

form of equation (23) is used to determine e ,. The 
use of the power-law scheme requires tedious trial and 
error, thus here the central-difference scheme is used 

because it gives an explicit expression for 6, [l]. It is 
then required for consistency that, for the grid points 
adjacent to the interface, equation (8) be rewritten 
in central-difference form in the case of 4 = h (or 
$= T). 

Because (a,), = 0 at the interface, equation (22) 
becomes 

^ e, 1 ^ 
Xl= -p2 and (c<),=o, 1-E X, 

( ) 
(24) 

the first of which is used to determine the interface 
position (see ref. [l] for details), and the second serves 
as the boundary condition for the velocity field in the 
liquid phase. 

3.2.3. Boundary conditions. The thickness L is deter- 

mined from the conservation of the total mass (includ- 
ing the liquid overflow above the solid phase) 

PI w(L--?+(P, -PJ 
s 

’ (.%At)~= I drl = 0 (25) 
0 

0’ 
c c 

W 0 1 2 

FIG. 4. System geometry for the example problem and the corresponding transformed coordinate system. 
The shaded area represents the liquid overflow region neglected in the analysis. 



Phase-change problems with convection and diffusion 463 

Table 1. Variables in the dimensionless governing equations 

p* I$* I-* s* 

Liquid 1 I 0 0 

u* 1 - aP*jax* 
t'* 1 -ap*/ap+ (R~/P~)T: 
T;I PF' 0 

Solid Pr 1 0 0 

T; (k,/c,) Pr- ’ 0 

where 2, is determined explicitly from equation (24). 
The absolute value of the integrand in equation (25) 
represents the area swept by the interface during 
the time interval At. Subsequently, all the geometric 
factors including pseudo-velocities are calculated 
from the known values of 2, and L. 

In addition to the interfacial mass and energy bal- 
ances, the following boundary conditions are used : 

Left wall : 24 = u = 0, T, = f. 

Right wall : T2 = F, 

(26) 

(27) 

Bottom wall : u = v = 0, 
aT, dT, 
_ = _ = 0 
ay ay 

(28) 

Top wall : 
au aT, aT, 
-=o, v=v,op, --=ygyo 
aY aY 

(29) 
Interface : uc = (a,), , uq = 0, T, = T, = f, 

(30) 

3.2.4. Solution procedure. The dimensionless 
governing equations are summarized in Table 1 
assuming laminar natural convection in the melt as in 
ref. [3]. The boundary conditions (26)-(31) are also 
transformed and discretized. Table 2 lists the numeri- 
cal values of the dimensionless parameters corre- 
sponding to the experiment in ref. [3]. A non-uni- 
formly spaced 22 x 34 grid is used in the liquid phase 
and a 22 x 3 1 grid in the solid phase ; therefore, the 
liquid overflow region has three grid points in the TV- 
coordinate direction. To initiate the computation, a 
one-dimensional pure conduction problem is solved 
until ,? ,/ W = 0.02, after which laminar natural con- 
vection is included. It is found that the subsequent 
solutions are not sensitive to the value of this pre- 
scribed initial thickness. The following procedure is 
employed for the solution : 

Outlet: uc = u,,,, uq = 0, T, = F,. (31) 

The boundary velocity (a,), is determined explicitly 
from equation (24). The value of vtoP is obtained from 
the kinetic boundary condition at the top free-surface, 
which can be expressed as V = 0 at n = 2 since no 
mass can cross this surface. As given in equation (31), 
the boundary conditions at the outlet are taken to be 
the same as those at the interface, except for ug. The 
velocity u,,~ is assumed to be uniform over the outlet 
and its value can be obtained from the mass balance 
over the liquid phase alone : 

(i) Determine the interface position explicitly 
from equation (24). In doing this, the temperature 
distributions in the liquid and solid phases are assumed 
constant during a time interval (At)2. 

(ii) Solve the temperature field in the newly-defined 
solid phase and go back to step (i) without the solution 
in the liquid phase. Repeat steps (i) and (ii) for a 
number of time intervals until t = t “+N(At),, where 
N = 20 is chosen. 

s 

2 

P,(U+X,),=,dv+ 'd'+Y,),=,d5 =0 
0 s 0 

(32) 

(iii) Solve the heat transfer and the fluid flow in the 
liquid phase with the time interval (At), = N(At)2. 
Note that, at this stage, the interface positions at both 
t = to and t = t ‘+ (At), are necessary to determine 
the pseudo-velocities in the liquid phase. 

(iv) Repeat steps (i)-(iii) until a stationary interface 
position is attained. 

where U+X, and V+ Y, denote the physical con- The maximum value of the dimensionless time step 
travariant velocity components (excluding the (At*), used in the computation is 0.1, where the 
pseudo-velocities). The effect of these arbitrarily dimensionless time is defined at t* = vt/H’, for 
imposed boundary conditions at the outlet is negli- v = 4.806 x 10m6 m* SC’ and H = 0.177 m. The use of 
gible because the size of the outlet is very small different time steps for each phase is similar to that 
(L/H < 0.03 in this example). The major weakness of in ref. [3] and it enables a precise resolution of the 
the simulation rather results from the adiabatic ther- temperature distribution within the solid phase in 
mal boundary condition at the top surface of the solid which the effects of the transient terms are more 
phase, and this point will be further discussed later. significant than in the liquid phase. 

Table 2. Dimensionless parameters in the example problem 

Parameter Numerical value 

WIH 0.389 
Pr 52.14 
Ste 0.0694 
Ra 0.846 x 10’ 

P, 1.051 

c, 0.864 

k 2.484 
T; 1 

t: 0 

$: - 2.395 
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t* = 0.414 

0.9 - 

0.%7 -Q.&c 

1.657 os 

0.2 0.4 0.6 0.6 

x/w 

0.0 0.2 0.4 0.6 

(W x/w 

FIG. 5. The transient positions of the interface at various elapsed times. (a) Experimental (solid lines) and 
numerical (dashed lines) results from ref. [3] and numerical results from this study (dotted lines). (b) 
Present numerical results for the adiabatic case (solid lines) and the saturation temperature case (symbols). 

3.3. Results 

Numerical results are presented graphically as the 
positions of the interface at various elapsed times. 
This selection is made because the interface positions 
are gradient-controlled, and are thus the most diag 
nostic of the simulation (as compared to the dis- 
t~bution of the temperature- and vel~ity-fields). 
Figure 5(a) shows the numerical results for the inter- 
face position at various elapsed times for 0 < y/H < 1. 
The experimental and numerical results from ref. [3] 
are also shown for comparison. In general, our 
numerical results agree well with the experiment in 
the lower part of the interface, while there is less 
agreement in the upper part. The same trend is also 
found in the numerical results of ref. [3]. Benard et al. 
[3] have claimed that the disagreement between their 
experimental and numerical results is due to the 
neglected non-orthogonal terms. However, we note 
that our method accounts for these terms, yet the local 
disagreement remains. Compared with the numerical 
results of ref. [3], the present method predicts slower 

movement of the interface. This is expected to be 
mainly due to the inclusion of non-orthogonal terms. 
The density difference and the liquid overflow slightly 
reduce the melting capacity of the liquid phase, but 
their influence on the movement of the interface is 
relatively small. 

As was mentioned, the volume change causes the 
melt to flow over the solid phase through the outlet. 
Therefore, the boundary condition at the top surface 
of the solid phase varies with time, initially being that 
of nearly no heat flow across this surface (due to the 
presence of the air gap), and then that maintained 
nearly at the satura~on temperature (due to the flow 
of the liquid over the solid). Also, the shape of this 
initially horizontal surface is continuously changing 
due to the fact that the flow of liquid over the solid 
phase results in heat transfer to the subcooled solid 
and, as a result, phase-change occurs at that surface. 
Therefore, the adiabatic thermal boundary condition 
assumed at the top surface of the solid phase, i.e. 
aT,/ay = 0 in equation (29), is no longer valid. This 
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boundary condition should be modified in order to 
accurately predict the experimental results. To do this 
with a reasonable effort, the adiabatic condition is 
changed to the constant saturation-temperature con- 
dition, i.e. T2 = p, (with other boundary conditions 
unchanged). This boundary condition is also sug- 
gested and used in ref. [3]. The present numerical 
results obtained by using this modified boundary con- 
dition are shown in Fig. 5(b), where those obtained 
by using the adiabatic boundary condition are also 
redrawn for comparison. Note that the change in the 
boundary condition has a negligible effect on the inter- 
facial motion in the lower part. However, in the upper 
portion of the enclosure, the interface moves sub- 
stantially faster than that of the adiabatic boundary 
condition. Near the upper portion of the interface, the 
modified boundary condition causes the temperature 
gradients (normal to the interface) of the solid-phase 
to decrease significantly compared with those of the 
adiabatic boundary condition. Then, this locally 
reduced temperature gradient results in an increase in 
the melting rate of the solid (through the interfacial 
energy balance). This increased melting rate acceler- 
ates the local movement of the interface, as is evident 
in our numerical results given in Fig. S(b), but we note 
that the numerical simulations of ref. [3] show no 
difference in the predicted interfacial locations, where 
both of the above-mentioned boundary conditions 
are used. This discrepancy will remain unsolved until 
more information becomes available on the imple- 
mentations in ref. [3]. 

The present results suggest that neither of the two 
boundary conditions (adiabatic and saturation-tem- 
perature) at the top surface of the solid phase correctly 
simulates the experimental boundary condition there. 
The local disagreements with the experiment are 
expected to arise from the assumptions of the two- 
dimensionality of the system and the laminar flow 
regime, the neglected liquid-overflow above the solid 
phase and the use of the constant physical properties 
in the simulation. 

4. SUMMARY 

A numerical method is developed that is applicable 
to both diffusion- and convection/diffusion-con- 
trolled moving interface problems and accounts for 
the density difference between phases. A general co- 
ordinate transformation is employed to immobilize 
the moving interfaces. The resulting transformed 
equation is expressed in a conservative form and 
reflects the conservation principles in a moving, curvi- 
linear control-volume in the physical coordinate. 
Therefore, even when the physical quantities such as 
density, velocity, enthalpy and transport properties 
change discontinuously across a given moving inter- 
face, the interface conditions become no more than 
the natural boundary conditions. This is because the 
components of the fluxes in the transformed equation 
are continuous across that interface. Moreover, since 

the transformed equation is developed only for a rep- 
resentative physical domain, a system made of a mul- 
tiple number of moving interfaces can be treated with- 
out any further effort. 

In deriving the finite-difference equations, the trans- 
formed governing equation is first integrated over the 
stationary control-volume in the transformed coor- 
dinate, and those integrated terms are then interpreted 
physically and discretized using the moving control- 
volume in the physical coordinate. For example, the 
pseudo-velocities arising from the immobilization of 
the moving interfaces are discretized according to the 
geometrical relation associated with the moving con- 
trol-volumes. This special treatment of the pseudo- 
velocities has two major advantages. First, the 
pseudo-velocity fields independently satisfy the mass 
continuity regardless of the existence of the physical 
velocity fields. Then, diffusion-controlled moving 
boundary problems can be resolved without any cre- 
ation of the parasitical mass sources. Second, the cases 
in which the physical domain boundaries move in 
both coordinate directions can be easily treated. The 
momentum equations are solved by using the physical 
covariant velocity components as dependent vari- 
ables. However, the general transformed equation 
employed in this study can also accommodate the 
stream function-vorticity formulation, because the 
present treatment of the pseudo-velocities is still appli- 
cable. In the grid system composed of moving control- 
volumes, the directions of the base-vectors for the 
covariant velocity components change in time and 
space. The time-wise rotation of the velocity-com- 
ponent base-vectors is handled here by an algebraic 
manipulation, similar to the treatment of the spatial 
variation of those base-vectors suggested by others. 

The method is applicable to two-dimensional prob- 
lems with multiple, moving interfaces. Here, the solu- 
tion method is tested against an example problem 
for which experimental results are available. For the 
combined convection and diffusion flux terms, the 
central-difference scheme is applied to the interfacial 
energy fluxes while the power-law scheme is used 
otherwise. The numerical results agree well with the 
available experimental results. 
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2. 

3. 
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APPENDIX 

The expressions for Mi? M,O, M, and M,, which were used 
in the discretization equation (I 3) for the velocity component 
r+ are 

where M; and M, are evaluated at the eight neighboring 
points (ee, w, Ne, Se, nE, SE, n and s in Fig. 1) and where 
Mj’ and b4; are evaluated only for the point e. 

Similarly, the expressions for NF, Ni. NC and N, for the 
velocity component no,” are 

where N, and N,, are also evaluated at the eight neighboring 
points (nE, nW, nn, s, Ne. e, NW and w in Fig. 1) and where 
Ni and Nt are evaluated only for the point n. 

UNE METHODE NUMERIQUE POUR LES PROBLEMES DE CHANGEMENT DE PHASE 
AVEC CONVECTION ET DIFFUSION 

R&um&Une formulation existante aux differences finies qui utilise l’immobilisation de l’interface, pendant 
la preservation de la forme conservative des equations, est Btendue pour inclure la convection et le 
changement de volume. Dans ce traitement bidimensionnel, les frontieres physiques se deplacent dans les 
deux directions. Cela est permis par une technique nouvelle qui discretise les pseudo-vitesses (du fait de 
l’immobilisation) en accord avec la relation geomttrique associte aux volumes de contrBle mobiles. Les 
champs des pseudo-vitesses satisfont indtpendamment la continuite de masse. Cela rend la methode 
numerique adapt&e aux problemes de frontiere mobile avec diffusion et diffusion convection. Dans la 
resolution des equations de quantitt de mouvement, les composantes covariantes de vitesse sont choisies 
comme variables dependantes et l’algorithme SIMPLER est utilise pour le couplage entre les equations de 
continuitt et de quantite de mouvement. La methode est applicable aux problemes avec plusieurs interfaces 
mobiles. En exemple, on considtre une fusion dans une cavitt‘ bidimensionelle. Les predictions sont 

comparees avec des resultats experimentaux disponibles et on trouve un accord satisfaisant. 

EIN NUMERISCHES VERFAHREN ZUR LOSUNG VON 
PHASENWECHSELPROBLEMEN MIT KONVEKTION UND DIFFUSION 

Zusammeofassung-Ein vorhandenes Finite-Differenzen-Modell, welches auf einer Festlegung der sich 
fortbewegenden Grenzflache bei gleichzeitiger Beibehaltung der Erhaltungsgleichungen aufbaut, wird 
in der vorliegenden Arbeit erweitert urn Konvektion und Volumenlnderungen berilcksichtigen zu 
kiinnen. In dem zweidimensionalen Model1 ist es den physikalischen Berandungen maglich sich in 
beiden Koordinatenrichtungen zu bewegen. Dies wird mit Hiife einer neuen Methode verwirklicht, bei 
der die Pseudogeschwindigkeiten (aufgrund der Festlegung) diskretisiert werden-abgestimmt auf die 
geometrische Situation und die sich bewegenden Kontrollvolumina. Dadurch befriedigen die Felder der 
Pseudogeschwindigkeit unabhangig die Massenerhaltung. Das vorgestellte numerische Verfahren kann 
somit auf Probleme mit beweglichen Berandungen angewandt werden, die entweder durch Diffusion oder 
durch Konvektion und Diffusion beeinIIuDt werden. Bei der Ltisung der Impulstransportgleichung werden 
die physikalischen kovarianten Geschwindigkeitskomponenten als abhangige Variable gewlhlt. Fur die 
Kopplung zwischen der Kontinuitltsgleichung und der Impulstransportgleichung wird der SIMPLER- 
Algorithmus verwendet. Diese Methode ist fiir Probleme mit mehreren sich bewegenden GrenzflPchen 
verwendbar. Als anschauliches Beispiel wird der Schmelzvorgang in einem zweidimensionalen Hohlraum 
betrachtet. Die Rechenergebnisse werden abschlieflend mit verfiigbaren Versuchsdaten verglichen, die 

Ubereinstimmung ist gut. 
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YHCJIEHHbIfi METOn PEIIlEHWIl3AJ(A9 @A30BOTO IIEPEXOAA I-IPW HAJIHWiM 
KOHBEKqkiM ki AW@DY3llki 

AIIIIOT~UJWFC~UJ~CTB~E~~ Me~onKoHeqHbm pa3Hocreii,~ K~T~POM Ilcnonbsy~ca~HncaIwiLI~~rny- 

ureircn rpaHHUbl pa3nena c coxpiuIeHaeM KOH~~~B~T~~BHO~O swa ypanHeHa#, 0606u1ae~cn Ha cnydi 
y=ieTa KOHEXXIWH H H3MeHeHHR o6xeMa. B upeanoxeeeok nsyhfepHofi ~ophyniposne npennonaraexn 
LIBHXeHHe &i3WeCI(HX TpaHlfQ B HCillpaBJEHEH 06eHX KOOpLUiHaT. c 3TOii UeJIblO IIpHMeHneTcn HOBbdi 

MeTO&B KOTOPOM IIGSB~OCKO~OCT~(BO~HEK~IO~~S 38 CgeT yMeHbI,,eHAn ~O~BRuIOCTH)~pHBOJ,JSTCR K 

!GiCKpeTHOMy BHny II0 I-eOMeTpE%CKOfi 3aBHCHMOClTi, CBff3aHHOii C ABH IKylWMHCn KOHTpOJIbHbIMU 

o6stmaMH.B ~3y~bTaTe~O~~~B~~KO~eZi~MocTOnT~bHOy~OB~~BOplnoTyC~OBHloMa~OBOii 

Henpep~BHocrH.~narOnapn3TOMy~apTynpennO~etea~ ¶HCJleHHb&ihteTO~KBJIneTCnlIpEWOJlHbIMAJIn 

pemeHun swaY,s ~0~0pbl~~l~~lgeHHe rpaam onpenemmcn nrr~yssieti,aTaKxceKoHeeK~efi HAI@- 

@y3Eieti. npH peIlIeHHH ypaBHeHti COXpaHeHHn HMIIyJlbCa IlPeLUlOJIWaeTCn, '#TO @H3HYeCKHe KOMIIO- 

HeHTbl KOBap~aHTHOti CKOPOCTH KBJIXIOTCR 3aBHCHMbthlH l,epeMeHHbIMH H &,IR COnpnlKeHHn ypaBHeH& 

Hepa3pMBHOCTH Ei COXpaHeHHn WMIIyJIbca HCIIOJIb3yeTCn WOpHTM SIMPLER. Pa3pa6OTaHIibdi MeTOn 

MOXET ITpHMeHnTbCK K 3Wa'EiM CO MHOxeCTBeHHbIMH nBHlKyII&HMHCn ~iuIHqahfH pa3neJla. B KaWCTBe 
mmmcrp~pymmero npHhfepa paccMaqxisaeTcn npouecc nnannemin B nnyMepHoi4 nonocm nonyveH0 

XOpOlItee COrnaCHe Memcly paCYeTHbIhW pe3yJIbTaTaMH H HMeloIIJHMHCn 3KCIIepHMeHTaJIbHbIMH 

LViHHbIMH. 


